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Abstract

The problem of the reinforcement of an elastic plate with a cutout by means of a two-dimensional patch, which completely covers
the cutout and is rigidly fixed to the plate along its boundary, is considered. The cutout and the patch can be of arbitrary shape.
The problem is reduced to a system of three singular integral equations using of special integral representations which describe the
stress state in the plate and in the patch. The unique solvability of the system is proved. Examples are presented.
© 2007 Elsevier Ltd. All rights reserved.

This problem has been explicitly solved using power series and conformal mappings methods1,2 for special cases
when the cutout in the plate and the reinforcing patch are bounded by concentric circles or confocal ellipses. The
related problem of the reinforcement of a plate with a circular cutout by means of a concentric or eccentric patch,
which is joined to the plate not only along its boundary but also along the boundary of the cutout, has been solved using
the same methods.3,4 Methods of reinforcing a plate with a cutout using a two-dimensional patch which is glued to
the plate along its surface have been studied using analytical and numerical methods.5–7 A number of papers8–13 have
investigated the strength properties of a plate with cracks which have been reinforced by two-dimensional patches that
are continuously fixed to the plate over their surfaces or discretely using rivets. Plates with cracks which are reinforced
by two-dimensional patches, fixed to the plate rigidly or elastically along their boundaries, have been investigated
in Refs. 14–16. A detailed review of the results concerning the above and other methods for the reinforcement and
maintenance of plates with cracks and cutouts by means of patches (two- or one-dimensional) can be found in Refs.
11,17.

1. Formulation of the problem

Suppose a thin elastic patch S0 is placed on an infinite thin elastic plate S with a cutout. This patch completely
covers the cutout and is rigidly fixed to the plate along the whole of its boundary L0 (Fig. 1). The plate and the patch
are homogeneous, isotropic and have a thickness, shear modulus and Poisson’s ratio h, � and � and h0, �0 and �0
respectively. The contours l and L0 are simple closed Lyapunov curves which do not share any common points. We go
round the contour L clockwise and the contour L0 anticlockwise. The origin of coordinates is located within L.
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Fig. 1.

The principal tensile stresses �1 and �2, which are located in the plane of the plate and at an angle of � and � + �/2
to the real axis respectively, act on the plate at infinity. Specified loads

(1.1)

act on the boundary of the cutout, where �n and �n are the normal and tangential components of the vector of the external
stresses acting on an area element which is tangential to the boundary of the cutout. Henceforth, in the calculations,
all the stresses are taken per unit thickness of the plate or the patch.

The plate and the patch only interact with one another through the line which joins them, in which the rigid joining
conditions:

(1.2)

are satisfied, where u + iv is the strain vector, the superscript plus (minus) corresponds to the limit value of some
parameter or other to the left (to the right) of the contour, parameters with a zero subscript refer to the patch, and
those without a zero subscript refer to the plate. The surfaces of the plate and the patch come into contact without
friction.

We will assume that the plate and the patch are under conditions of generalized plane stress, which has also to be
determined.

2. Uniqueness of the solution of the problem

The problem can be considered as the first fundamental problem in the theory of elasticity for a “plate - patch”
structure. We shall show that, if a solution of this problem exists, then it is unique.

Assuming that the stresses and strains are continuous in the closures of the domains into which the above-mentioned
structure is subdivided by the joining line L0, we consider the integral

where ds is an element of the length of an arc, and X+
n and Y+

n are the horizontal and vertical components of the stress
vector acting in the plate on an area element which is tangential to the contour L. We now add to and subtract from J
the analogous integral along the line L0:

(2.1)
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It follows from the equality Xn + iYn = (�n + i�n)ei�, where � is the angle between the real axis and the right normal to
the line L0, and from the last condition of (1.2) that

and, therefore, taking account of the first two conditions of (1.2), we have

(2.2)

Replacing the last integral in (2.1) by the sum (2.2), we obtain

(2.3)

where the integrals are taken along the boundary of the part S1 of the plate located between the lines l and L0, of the
part S2 of the plate located outside L0 and along the patch boundary S0. On the right-hand side of equality (2.3), the
parameters Xn, Yn, u, v refer to the plate, and the parameters (Xn, Yn, u, v)0 refer to the patch. If they refer to the
difference between two solutions of the problem being considered, then J = 0. When z → ∞, the stresses in the plate,
corresponding to the difference in the solutions, decreases as |z|−2 and Green’s formula can therefore be applied to the
integrals on the right-hand side of equality (2.3). As a result, using an approach analogous to that in Ref. 18, we obtain

where 	, � and 	0, �0 are the Lamé constants of the plate and the patch respectively, and � = exx + eyy and exx, exy, eyy

are the components of the strain tensor. Since the constants 	, �, 	0, �0 and are positive J = 0, it follows from the last
equality that the strain tensor, and of course all the stresses are equal to zero everywhere in the plate and in the patch.
Hence, if the problem has a solution, it is unique.

Remark 1. The second fundamental problem in the theory of elasticity for a “plate - patch” structure when, instead
of the stresses, the displacements on the boundary L of the cutout are specified:

(2.4)

will also have unique solution. Problem (1.2), (2.4) corresponds to the reinforcement of a plate with a cutout by means
of an elastic patch S0 and an absolutely rigid thin laminated insert into the cutout which is rigidly fixed to the plate
along the line L. In this case, for the problem to be uniquely solvable it is additionally necessary to specify the further
principal force vector which acts on the boundary of the cutout that is equivalent to the application of a specified force
to the rigid insert.

3. Integral representations of complex potentials

We will now formally supplement the plate S and the patch S0 up to the complete planes such that they change
continuously on passing across the boundary of the cutout in the first stress plane, and the strains outside the patch
will also be zero in the second stress plane. Then, when account is taken of conditions (1.2), the complex potentials,
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in terms of which the stresses and strains in the plate and the patch are expressed, can be taken in the form19

(3.1)

where

(3.2)

(3.3)

Here, X + iY and M are the principal vector and the principal moment (with respect to the origin of coordinates) of
the external stresses acting on the boundary of the cutout and g′(t), q(t), g′

0(t) are unknown functions which, like the
specified function p(t), we shall assume to be continuous in Hölder’s sense on the corresponding lines.

In deriving the representations for �0(z) and �0(z), account has been taken of the fact that the discontinuity in the
strain vector in the second auxiliary plane on crossing the line L0 is equal to (u + iv)+0 (t) and the discontinuity in the
expression (�n + i�n)0 is equal to −2h−1∗ q(t) by virtue of the last equality of (1.2).

Expanding the functions �(z) and �(z) in Laurent series in the neighbourhood of infinity and comparing them with
the well-known Muskhelishvili representations of complex potentials in the neighbourhood of infinity,18 we obtain

(3.4)

The first of conditions (3.4) expresses the uniqueness of the strains on going round the cutout in the plate and the
second condition expresses the equilibrium of the “plate - patch” structure. To these conditions it is necessary to add
the further condition for the strains in the patch to be unique

(3.5)
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4. The integral equations of the problem

Suppose L′ is a smooth orientated curve lying in the closure S̄ of the domain S. In particular, L′ can coincide with
L or L0. Then, the normal and tangential components of the stress vector acting on area element which is tangential to
the curve L′ as viewed from the right normal and the derivative of the strain vector u + iv at the points of the curve L′
are found in terms of the potentials �(z) and �(z) using the formulae18,19

(4.1)

These formulae also hold at points of the curve located in the closure S̄0 of the patch, if all the parameters in them are
taken with a zero subscript.

On the basis of formulae (4.1) and representations (3.1), on satisfying conditions (1.1) and (1.2), we obtain a system
of three singular integral equations in the closed contours L and L0 for finding the three unknown functions g′(t), t ∈ L
and q(t), g′

0(t), t ∈ L0

(4.2)
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where

For convenience in deriving system (4.2), the functionals
(

1
�

∫
L

g′(t)d�
) |dt|

dt
and

(
1
�

∫
L0

q(�)d�
) |dt|

dt
, which are

equal to zero, are added to the left-hand sides of the first and second equations respectively.
We will now show that any solution of system (4.2), if such a solution exists, satisfies conditions (3.4) and (3.5).
Using the notation

and taking account of the representations (3.1), we can write system (4.2) in the form

(4.3)

where �(t), �(t), �0(t), �0(t) are the direct (principal) values of the functions (integrals) (3.1) on the lines L0, and
�+(t), �+(t), �+

0 (t), �+
0 (t) are their limit values from the left on L0. On the line L, the direct values of the functions

�(z), z̄�′(z) + �(z) and their limit values from the right (from within the contour formed by the line L) are related by
the equalities19

on the basis of which we can write the first equation of (4.3) in the form

and integrate along the line L, treating it (after changing the direction of passing round it) as the boundary of a simply-
connected domain which coincides with the cutout. Since the functions �(z), �(z) are continuous on the contour L and
analytic within it, apart from at the point z = 0, where they have poles with residues −Q and 
Q̄ respectively, then
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After integration, we thereby obtain

where

Consequently, a = 0, which is equivalent to satisfying the first condition of (3.4). On carrying out similar actions
with the second equation of (4.3) on the line L0, we obtain the second condition of (3.4) and, from the last equa-
tion of (4.3) by virtue of the analyticity of the functions �0(z), �0(z) within the contour L0, we obtain condition
(3.5).

Hence, for the solution of the problem we have the system of singular integral equations in the class of Hölder
functions.

Remark 2. When �0 = 0. Which corresponds to the case when there is no patch, it follows from the second equation
of system (4.2) that g′

0(t) = 0, t ∈ L0. The third equatio n of the system then becomes a homogeneous integral equation
for the second fundamental problem in the theory of elasticity for a patch S0 and it therefore19 only has the trivial
solution q(t) = 0, t ∈ L0. The same equation in q(t) likewise also holds when h0 = 0. As a result, the first equation of the
system is transformed into the equation of the first fundamental problem of the theory of elasticity for an infinite plate
S with a patch.

Remark 3. The representations (3.1) and the system of Eq. (4.2) also do not change their form when the patch covers
several cutouts which are bounded by closed Lyapunov curves L1, L2, . . ., Ln if, by L, we mean the set of these curves.
In this case, instead of the terms

it is necessary to take the terms

in the representations for �(z) and �(z) respectively, where zk is an arbitrary fixed point within a contour Lk and

It is clear that, in this case, the first equation of the system decomposes into n equations on the curves Lk for each of

which it is necessary to take “its own” functional
(

1
�

∫
Lk

g′(�)d�
) |dt|

dt
instead of the functional

(
1
�

∫
L

g′(�)d�
) |dt|

dt
.
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5. The unique solvability of the system of integral equations

We will transform system (4.2) to the form

(5.1)

where
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Only regular terms occur on the right-hand sides of the equations of system (5.1) while their left-hand sides are
characteristic parts of the equations in the individual functions

(5.2)

All these equations have a zero index and, hence,20 they allow of equivalent regularization, for example, by the
Carleman-Vekua method. As a result of using this method, an equivalent system of three Fredholm integral equations
of the second kind of the form

(5.3)

is obtained, where mkj(�, t), nkj(�, t) are regular kernels, which are expressed in terms of the kernels M1(�, t), M2(�, t)
and integrals of them. The form of the kernels is not important for the subsequent reasoning, and they are not presented
here on account of their length. The functions rk(t) are expressed in terms of the functions p1(t), p2(t) and particular
integrals of them, and, therefore, like the last functions, are continuous in the Hölder sense.

System (5.3) contains both the unknown functions fk(t) (k = 1, 2, 3) as well as the complex conjugates to them.
Taking the complex conjugate of Eq. (5.3) and introducing the new functions

(5.4)

we obtain a system of six ordinary Fredholm integral equations in the six unknown functions fk(t) (k = 1, 2, . . ., 6) under
the additional conditions fk(t) = fk+3(t) (k = 1, 2, 3). These conditions can always be satisfied. In fact, we will assume
that there is a certain solution f ∗

k (t) (k = 1, 2, . . . , 6) of the system. Then, f ∗
4 (t), f ∗

5 (t), f ∗
6 (t), f ∗

1 (t), f ∗
2 (t), f ∗

3 (t) will
likewise be a solution of the system, and, hence, the half sum of these two solutions will be a solution of the system
which satisfies the above-mentioned additional conditions.

We will now show that the homogeneous system of Fredholm equation, corresponding to system (5.3), only has a
trivial solution. By virtue of the equivalence of systems (4.2) and (5.3), this homogeneous system is a consequence
of the “homogeneous” mechanical problem when there are no stresses in the plate on the boundary of the cutout
and at infinity. Then, by virtue of the uniqueness of the solution of the problem, all the stresses in the plate and
the patch are equal to zero, and, hence,18 the complex potentials �(z) and �0(z), describing the stress state are
identically equal to zero, and the complex potentials �(z) and �0(z) are determined, apart from imaginary terms:
�(z) = i�j, z ∈ Sj(j = 1, 2); �0(z) = i�0, z ∈ S0, where all the �j are real. Also, �(z) = 0, �(z) = i�3 in the complement
S3 = C\S of the plate up to the auxiliary plane since, on passing across the line L from S to S3, the stresses change
continuously, and they are therefore equal to zero on the boundary of the domain S3, and this means that they are also
zero in the whole of the domain. Consequently, by formulae (3.3) and (4.1),
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We will now calculate the principal moment (with respect to the origin of coordinates) of the forces acting on the
line L from the right. On the one hand, M = 0. On the other hand,19

where the double integral is equal to the area of the domain S3. Hence, M = 0 if and only if �3 − �1 = 0. Consequently,
g′(t) = 0, t ∈ L. Similarly, on calculating the principal moment of the forces acting on the line L0 from the right, we obtain
g′

0(t) = 0, t ∈ L0. All the functions (5.2) and (5.4) are then equal to zero and the homogeneous system of Fredholm
equations obtained from (5.3) only has a trivial solution, and the corresponding inhomogeneous system (5.3) is solvable
for any Hölder functions rk(t).20 Since the system of singular integral Eq. (4.2) is equivalent to the system of Fredholm
Eq. (5.3), system (4.2) is solvable in the class of Hölder functions and, moreover, it is uniquely solvable by virtue of
the uniqueness of the solution of the mechanical problem.

Remark 4. It is also easy to obtain the integral equations of the second fundamental problem (1.2), (2.4) for a “plate
- patch” structure on the basis of representations (3.1). The first of these equations has the form

and the second and third equations are identical to the corresponding equations of system (4.2). The unique solvability
of this last system is proved using the scheme described above.

6. Numerical calculations

Numerical calculations can be carried out both using the system of singular integral Eq. (4.2) as well as the equivalent
system of Fredholm integral equations of the second kind, which is obtained from it. However, the Fredholm equations
are less convenient to use on account of the complexity of their kernels. The method of mechanical quadrature21 has
been used for the numerical solution of system (4.2). Here, the formulae

(6.1)

were used for the approximation of the integrals and the unknown functions, where n is an even natural number, �0
is an arbitrarily fixed real number and � is a real parameter, which is used to specify the boundaries of the cutout and
the patch, L: t = 
(�) and L0: t = 
0(�), � ∈ [0, 2�]. The first formula of (6.1) is true for any � ∈ [0, 2�] if the kernel
M(�, �) is regular and, when � = �k = �0 + �(2k − 1)/n (k = 1, 2, . . ., n), if M(�, �) is a singular kernel.

Graphs of the stresses on the boundary of the cutout L and on the joining line L0 are shown in Fig. 3 as a function of
the polar angle � (the polar axis originates at the centre of the square and is directed horizontally from left to right) in
the case of a plate with a cutout in the form of a square with rounded corners, which is reinforced by a triangular patch
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Fig. 2.

with rounded corners (Fig. 2). The boundaries of the cutout and the patch are specified by the parametric equations

where r, R and r0, R0 are the radii of the circles inscribed in and circumscribed about the square L and the triangle L0
respectively. The plate and the patch have the same thickness h = h0, and the elastic parameters are � = 73 MPa, � = 0.42
and �0 = 40 MPa, �0 = 0.37 respectively. The boundary of the cutout is stress-free and a tensile stress �1 = � acts on
the plate at infinity at an angle � = �/4 to the positive direction of the real axis. The solid curve in Fig. 3a corresponds
to the stress �s which acts on the normal cross-section to the boundary of the cutout L when there is a patch, and the
dot-dash curve corresponds to the same stress when there is no patch. Graphs of the stresses in the plate inside and
outside the contour L0 are denoted by the numbers 1 and 2 in Fig. 3, b, c and d and, as viewed from the patch, by the
number 3.

Fig. 3.



A.Yu. Zemlyanova, V.V. Sil’vestrov / Journal of Applied Mathematics and Mechanics 71 (2007) 40–51 51

Acknowledgement

This research was supported financially by the Russian Foundation for Basic Research (04-01-00160).

References

1. Sil’vestrov VV, Zemlyanova AYu. Repair of a plate with a circular cutout by means of a patch. Zh Prikl Mekh Tekhn Fiz 2004;45(4):176–83.
2. Sil’vestrov VV, Zemlyanova AYu. Stretching of a plate with an elliptic cutout reinforced with a confocal elliptic patch. Mekh Kompozits

Materialov i Konstruktsii 2004;10(4):577–95.
3. Zemlyanova AYu, Sil’vestrov VV. The problem of a circular patch. Prikl Mat Mekh 2005;69(4):676–83.
4. Sil’vestrov VV, Zemlyanova AYu. Reinforcement of a plate with a circular cutout using an eccentric circular patch joined along its boundary

and the boundary of the cutout. Theor Prikl Mekh 2005;19:128–40.
5. Mitchell RA, Wooley RM, Chwirut DJ. Analysis of composite-reinforce cutouts and cracks. AIAA Journal 1975;13(6):744–9.
6. Engels H, Zakharov D, Becker W. The plane problem of an elliptically reinforced circular hole in an anisotropic plate or laminate. Arch Appl

Mech 2001;71(9):601–12.
7. Tse PC, Lau KJ, Wong WH. Stress and failure analysis of woven composite plates with adhesive patch reinforced circular hole. Composites

Part B: Engineering 2002;33(1):57–65.
8. Ratwani MM. Analysis of cracked adhesively bonded laminated structures. AIAA Journal 1979;17(9):988–94.
9. Grishin SN, Begeyev TK. Stress intensity factors in a plate with a central transverse crack reinforced with patches made of a composite material.

Mekh Kompositnykh Materialov 1986;4:696–700.
10. Duong CN, Yu J. The stress intensity factor for a cracked stiffened sheet repaired with an adhesively bonded composite patch. Intern J Fracture

1997;84(1):37–60.
11. Wang CH, Rose LRF. Bonded repair of cracks under mixed mode loading. Intern J Solids and Structures 1998;35(21):2749–73.
12. Lee KY, Kim OW. Stress intensity factor for sheet-reinforced and cracked plate subjected to remote normal stress. Eng Fract Mech

1998;61(3/4):461–8.
13. Tsamasphyros GJ, Konderakis GN, Karalekas D. Study of composite patch repair by analytical and numerical methods. Fatigue Fract Engng

Mater Struct 2001;24(10):631–6.
14. Chen YH, Hanh HG. Interaction of a stiffener with a crack in an anisotropic sheet. Eng Fract Mech 1989;33(6):887–95.
15. Savruk MP, Kravets’ VS. The stress state of a cracked plate reinforced by a patch. Fiz-Khim Mekh Materialov 1991;27(4):33–40.
16. Savruk MP, Kravets VS. Effect of reinforcing patches on the stress distribution in cracked plates. Prikl Mekh 1993;29(3):48–55.
17. Grigolyuk EI, Tolkachev VM. Contact Problems in the Theory of Plates and Shells. Moscow: Mir; 1987.
18. Muskhelishvili NI. Some Basic Problems of the Mathematical Theory of Elasticity. Amsterdam: Kluwer; 1977.
19. Savruk MP. Two-dimensional Problems of Elasticity for Cracked Bodies. Kiev: Naukova Dumka; 1981.
20. Muskhelishvili NI. Singular Integral Equations; Boundary Problems, of Function Theory and their Applications to Mathematical Physics.

New York: Dover; 1992.
21. Ivanov VV. The Theory of Approximate Methods and its Application to the Numerical Solution of Singular Integral Equations. Kiev: Naukova

Dumka; 1968.

Translated by E.L.S.


	The problem of the reinforcement of a plate with a cutout by a two-dimensional patch
	Formulation of the problem
	Uniqueness of the solution of the problem
	Integral representations of complex potentials
	The integral equations of the problem
	The unique solvability of the system of integral equations
	Numerical calculations
	Acknowledgement
	References


